These are your formula sheets

DO NOT TURN IT IN!

Derivatives:
$\frac{d}{d x} a x^{n}=a n x^{n-1}$
$\frac{d}{d x} \sin a x=a \cos a x$
$\frac{d}{d x} \cos a x=-a \sin a x$
$\frac{d}{d x} e^{a x}=a e^{a x}$
$\frac{d}{d x} \ln a x=\frac{1}{x}$

Constants:
$\epsilon_{0}=8.8542 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \mathrm{m}^{2}\right)$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} /(\mathrm{Am})$
$c=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Integrals:

$$
\begin{aligned}
& \int a x^{n} d x=a \frac{x^{n+1}}{n+1} \\
& \int \frac{d x}{x}=\ln x \\
& \int \sin a x d x=-\frac{1}{a} \cos a x \\
& \int \cos a x d x=\frac{1}{a} \sin a x \\
& \int e^{a x} d x=\frac{1}{a} e^{a x} \\
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a} \\
& \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(\sqrt{x^{2}+a^{2}}+x\right)
\end{aligned}
$$

$$
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}
$$

$$
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{1}{a^{2}} \frac{x}{\sqrt{x^{2}+a^{2}}}
$$

$$
\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=-\frac{1}{\sqrt{x^{2}+a^{2}}}
$$

Physics 208 - Formula Sheet for Final Exam

Do NOT turn in these formula sheets!

Electromagnetic waves:

Maxwell's equations predict the existence of electromagnetic waves that propagate in vacuum with the electric and magnetic fields perpendicular and with ratio:

$$
E=c B
$$

The waves travel with velocity c where

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}
$$

Energy in Electromagnetic waves:

The energy flow rate (power per unit area) of an electromagnetic wave is given by the Poynting vector \vec{S}

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

The magnitude of the time-averaged value of \vec{S} is called the intensity of the wave

$$
I=\frac{1}{2} \frac{E_{\max } B_{\max }}{\mu_{0}}=\frac{E_{\max }^{2}}{2 \mu_{0} c}=\frac{1}{2} \epsilon_{0} c E_{\max }^{2}
$$

Speed of light in materials

When light propagates through a material, its speed is lower than the speed in free space space by a factor called the index of refraction

$$
v=\frac{c}{n}
$$

Reflection and refraction

At a smooth interface, the incident, reflected, and refracted rays and the normal to the interface all lie in a single plane. The angle of incidence and angle of reflection (measured from the normal) are equal $\theta_{r}=\theta_{a}$ and the angle of refraction is given by Snell's law:

$$
n_{a} \sin \theta_{a}=n_{b} \sin \theta_{b}
$$

Polarization

A polarizing filter passes waves that are linearly polarized along its polarizing axis. When polarized light of intensity $I_{\max }$ is incident on a polarizing filter used as an analyzer, the intensity I of the light transmitted depends on the angle ϕ between the polarization direction of the incident light and the polarizing axis of the analyzer:

$$
I=I_{\max } \cos ^{2} \phi
$$

Spherical Mirrors

Object and image distances:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

where $f=R / 2$.

Thin Lenses

Object and image distances:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

where

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

Magnification

The lateral magnification for the systems described above is

$$
m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}
$$

Physics 208 - Formula Sheet for Exam 3
 Do NOT turn in these formula sheets!

Forces:

The force on a charge q moving with velocity \vec{v} in a magnetic field \vec{B} is

$$
\vec{F}=q \vec{v} \times \vec{B}
$$

and the force on a differential segment $d \vec{l}$ carrying current I is

$$
d \vec{F}=I d \vec{l} \times \vec{B}
$$

Magnetic Flux:

Magnetic flux is defined analogously to electric flux (see formula sheet 1)

$$
\Phi_{B}=\int \vec{B} \cdot d \vec{A}
$$

The magnetic flux through a closed surface seems to be zero

$$
\oint \vec{B} \cdot d \vec{A}=0
$$

Magnetic dipoles:

A current loop creates a magnetic dipole $\vec{\mu}=I \vec{A}$ where I is the current in the loop and \vec{A} is a vector normal to the plane of the loop and equal to the area of the loop. The torque on a magnetic dipole in a magnetic field is

$$
\vec{\tau}=\vec{\mu} \times \vec{B}
$$

Biot-Savart Law:

The magnetic field $d \vec{B}$ produced at point P by a differential segment $d \vec{l}$ carrying current I is

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}
$$

where \hat{r} points from the segment $d \vec{l}$ to the point P.
Magnetic field produced by a moving charge:
Similarly, the magnetic field produced at a point P by a moving charge is

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}
$$

Ampère's Law: (without displacement current)

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{\mathrm{encl}}
$$

Faraday's Law:

The EMF produced in a closed loop depends on the change of the magnetic flux through the loop

$$
\mathcal{E}=-\frac{d \Phi_{B}}{d t}
$$

When an EMF is produced by a changing magnetic flux there is an induced, nonconservative, electric field \vec{E} such that

$$
\oint \vec{E} \cdot d \vec{l}=-\frac{d}{d t} \int_{A} \vec{B} \cdot d \vec{A}
$$

Mutual Inductance:

When a changing current i_{1} in circuit 1 causes a changing magnetic flux in circuit 2, and vice-versa, the induced EMF in the circuits is

$$
\mathcal{E}_{2}=-M \frac{d i_{1}}{d t} \quad \text { and } \quad \mathcal{E}_{1}=-M \frac{d i_{2}}{d t}
$$

where M is the mutual inductance of the two loops

$$
M=\frac{N_{2} \Phi_{B 2}}{i_{1}}=\frac{N_{1} \Phi_{B 1}}{i_{1}}
$$

where N_{i} is the number of loops in circuit i.

Self Inductance:

A changing current i in any circuit generates a changing magnetic field that induces an EMF in the circuit:

$$
\mathcal{E}=-L \frac{d i}{d t}
$$

where L is the self inductance of the circuit

$$
L=N \frac{\Phi_{B}}{i}
$$

For example, for a solenoid of N turns, length l, area A, Ampère's law gives $B=\mu_{0}(N / l) i$, so the flux is $\Phi_{B}=$ $\mu_{0}(N / l) i A$, and so

$$
L=\mu_{0} \frac{N^{2}}{l} A
$$

$L R$ Circuits:

When an inductor L and a resistance R appear in a simple circuit, exponential energizing and de-energizing time dependences are found that are analogous to those found for $R C$-circuits. The time constant τ for energizing an $L R$ circuit is

$$
\tau=\frac{L}{R}
$$

$L C$ Circuits:

When an inductor L and a capacitor C appear in a simple circuit, sinusoidal current oscillation is found with frequency f such that

$$
2 \pi f=\frac{1}{\sqrt{L C}}
$$

Physics 208 - Formula Sheet for Exam 2
 Do NOT turn in these formula sheets!

Capacitance:

A capacitor is any pair of conductors separated by an insulating material. When the conductors have equal and opposite charges Q and the potential difference between the two conductors is $V_{a b}$, then the definition of the capacitance of the two conductors is

$$
C=\frac{Q}{V_{a b}}
$$

The energy stored in the electric field is

$$
U=\frac{1}{2} C V^{2}
$$

If the capacitor is made from parallel plates of area A separated by a distance d, where the size of the plates is much greater than d, then the capacitance is given by

$$
C=\epsilon_{0} A / d
$$

Capacitors in series:

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots
$$

Capacitors in parallel:

$$
C_{\mathrm{eq}}=C_{1}+C_{2}+\ldots
$$

If a dielectric material is inserted, then the capacitance increases by a factor of K where K is the dielectric constant of the material

$$
C=K C_{0}
$$

Current:

When current flows in a conductor, we define the current as the rate at which charge passes:

$$
I=\frac{d Q}{d t}
$$

We define the current density as the current per unit area, and can relate it to the drift velocity of charge carriers by

$$
\vec{J}=n q \vec{v}_{d}
$$

where n is the number density of charges and q is the charge of one charge carrier.

Ohm's Law and Resistance:

Ohm's Law states that a current density J in a material is proportional to the electric field E. The ratio $\rho=E / J$ is called the resistivity of the material. For a conductor
with cylindrical cross section, with area A and length L, the resistance R of the conductor is

$$
R=\frac{\rho L}{A}
$$

A current I flowing through the resistor R produces a potential difference V given by

$$
V=I R
$$

Resistors in series:

$$
R_{\mathrm{eq}}=R_{1}+R_{2}+\ldots
$$

Resistors in parallel:

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots
$$

Power:

The power transferred to a component in a circuit by a current I is

$$
P=V I
$$

where V is the potential difference across the component.

Kirchhoff's rules:

The algebraic sum of the currents into any junction must be zero:

$$
\sum I=0
$$

The algebraic sum of the potential differences around any loop must be zero.

$$
\sum V=0
$$

RC Circuits:

When a capacitor C is charged by a battery with EMF given by \mathcal{E} in series with a resistor R, the charge on the capacitor is

$$
q(t)=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

where $t=0$ is when the the charging starts.
When a capacitor C that is initially charged with charge Q_{0} discharges through a resistor R, the charge on the capacitor is

$$
q(t)=Q_{0} e^{-t / R C}
$$

where $t=0$ is when the the discharging starts.

Physics 208 - Formula Sheet for Exam 1
 Do NOT turn in these formula sheets!

Force on a charge:

An electric field \vec{E} exerts a force \vec{F} on a charge q given by:

$$
\vec{F}=q \vec{E}
$$

Coulomb's law:

A point charge q located at the coordinate origin gives rise to an electric field \vec{E} given by

$$
\vec{E}=\frac{q}{4 \pi \epsilon_{0} r^{2}} \hat{r}
$$

where r is the distance from the origin (spherical coordinate), \hat{r} is the spherical unit vector, and ϵ_{0} is the permittivity of free space:

$$
\epsilon_{0}=8.8542 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{~m}^{2}\right)
$$

Superposition:

The principle of superposition of electric fields states that the electric field \vec{E} of any combination of charges is the vector sum of the fields caused by the individual charges

$$
\vec{E}=\sum_{i} \vec{E}_{i}
$$

To calculate the electric field caused by a continuous distribution of charge, divide the distribution into small elements and integrate all these elements:

$$
\vec{E}=\int d \vec{E}=\int_{q} \frac{d q}{4 \pi \epsilon_{0} r^{2}} \hat{r}
$$

Electric flux:

Electric flux is a measure of the "flow" of electric field through a surface. It is equal to the product of the area element and the perpendicular component of \vec{E} integrated over a surface:

$$
\Phi_{E}=\int E \cos \phi d A=\int \vec{E} \cdot \hat{n} d A=\int \vec{E} \cdot d \vec{A}
$$

where ϕ is the angle from the electric field \vec{E} to the surface normal \hat{n}.

Gauss' Law:

Gauss' law states that the total electric flux through any closed surface is determined by the charge enclosed by that surface:

$$
\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\mathrm{encl}}}{\epsilon_{0}}
$$

Electric conductors:

The electric field inside a conductor is zero. All excess charge on a conductor resides on the surface of that conductor.

Electric Potential:

The electric potential is defined as the potential energy per unit charge. If the electric potential at some point is V then the electric potential energy at that point is $U=q V$. The electric potential function $V(\vec{r})$ is given by the line integral:

$$
V(\vec{r})=-\int_{\vec{r}_{0}}^{\vec{r}} \vec{E} \cdot d \vec{l}+V\left(\vec{r}_{0}\right)
$$

Beware of the minus sign. This gives the potential produced by a point charge q :

$$
V=\frac{q}{4 \pi \epsilon_{0} r}
$$

for a collection of charges q_{i}

$$
V=\sum_{i} \frac{q_{i}}{4 \pi \epsilon_{0} r_{i}}
$$

and for a continuous distribution of charge

$$
V=\int_{q} \frac{d q}{4 \pi \epsilon_{0} r}
$$

where in each of these cases, the potential is taken to be zero infinitely far from the charges.

Field from potential:

If the electric potential function is known, the vector electric field can be derived from it:

$$
E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}
$$

or in vector form:

$$
\vec{E}=-\left(\frac{\partial V}{\partial x} \hat{\imath}+\frac{\partial V}{\partial y} \hat{\jmath}+\frac{\partial V}{\partial z} \hat{k}\right)
$$

Beware of the minus sign.

